Nordhaus–Gaddum-Type Results for the Steiner Gutman Index of Graphs
نویسندگان
چکیده
منابع مشابه
Nordhaus-Gaddum type results for the Harary index of graphs
The emph{Harary index} $H(G)$ of a connected graph $G$ is defined as $H(G)=sum_{u,vin V(G)}frac{1}{d_G(u,v)}$ where $d_G(u,v)$ is the distance between vertices $u$ and $v$ of $G$. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ ...
متن کاملnordhaus-gaddum type results for the harary index of graphs
the emph{harary index} $h(g)$ of a connected graph $g$ is defined as $h(g)=sum_{u,vin v(g)}frac{1}{d_g(u,v)}$ where $d_g(u,v)$ is the distance between vertices $u$ and $v$ of $g$. the steiner distance in a graph, introduced by chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. for a connected graph $g$ of order at least $2$ and $ssubseteq v(g)$, th...
متن کاملBounds on Gutman Index
The Gutman index (also known as Schultz index of the second kind) of a graph G is defined as Gut(G) = ∑ u,v∈V (G) d(u)d(v)d(u, v). We show that among all graphs on n vertices, the star graph Sn has minimal Gutman index. In addition, we present upper and lower bounds on Gutman index for graphs with minimal and graphs with maximal Gutman index. Corresponding author Supported by project 1M0545 of ...
متن کاملassessment of the park- ang damage index for performance levels of rc moment resisting frames
چکیده هدف اصلی از طراحی لرزه ای تامین ایمنی جانی در هنگام وقوع زلزله و تعمیر پذیر بودن سازه خسارت دیده، پس از وقوع زلزله است. تجربه زلزله های اخیر نشان داده است که ساختمان های طراحی شده با آیین نامه های مبتنی بر نیرو از نظر محدود نمودن خسارت وارده بر سازه دقت لازم را ندارند. این امر سبب پیدایش نسل جدید آیین نامه های مبتنی بر عملکرد شده است. در این آیین نامه ها بر اساس تغییرشکل های غیرارتجاعی ...
15 صفحه اولSharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs
In $1994,$ degree distance of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the multiplicative version of degree distance and multiplicative ver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2020
ISSN: 2073-8994
DOI: 10.3390/sym12101711